首页 百科知识 范文大全 经典语录
首页 > 范文大全 >

初中数学说课稿案例,干货

100次浏览     发布时间:2024-10-21 10:03:40    


各位考官大家好,我是xx号考生。今天我说课的内容是《中心对称》。

一、说教材

《中心对称》是北师大版八年级下册第三章第三节的内容,本节课主要讲中心对称的定义以及中心对称的性质,这不仅是对前面学习四边形的一个必要的补充,更是与图形中的三中变换中的“旋转”有着不可分割的关系,学生已经掌握了轴对称的概念和性质,可以利用类比的方法让学生掌握中心对称的定义和性质。现实生活中随处可见中心对称的应用,通过对这一课的学习可以完善初中“对称图形”的知识讲授。


二、说学情

接下来,我来谈谈我班学生情况。他们对于知识具有较好的理解能力和应用能力,喜欢合作探讨式学习,对数学学习有较浓厚的兴趣。在以往的学习中,学生的动手能力已经得到了一定的训练,本节课将进一步培养学生这些方面的能力。


三、教学目标

教学目标是教学活动实施的方向、和预期达到的结果、是一切教学活动的出发点和归宿,我精心设计了如下的教学目标:

【知识与技能】

能够认识中心对称图形并且了解其性质以及判断一个图形是否是中心对称图形。

【过程与方法】

通过对“中心对称图形”的探究,提析问题、解决问题的能力。

【情感态度与价值观】

通过一系列的探究过程,体验数学活动充满着探索性和创造性,增强学习数学的兴趣和勇于创新的精神。


四、教学重难点

本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:

【重点】

理解中心对称的定义以及性质。

【难点】

探究中心对称的性质。


五、教学方法

根据本节课的教学目标、教材内容以及学生的认知特点,我采用启发式、探索式教学方法,意在帮助学生通过观察,自己动手,从实践中获得知识。整个探究学习的过程充满了师生之间、学生之间的交流和互动,体现了教师是教学活动的组织者、引导者,而学生才是学习的主体。


六、教学过程

教学过程是师生积极参与、交往互动、共同发展的过程,具体教学过程如下:

(一)导入新课

复习导入:

提问:什么是旋转?旋转有哪些性质?确定一个图形旋转后的位置,需要哪些条件?

学生回答、反馈。

纸片作旋转演示,引出中心对称。

(设计意图:本节课和前面所学的知识点“旋转”有着不可分割的关系,所以通过温故知新的方式引入本课内容既回顾了以往的知识,又能够联系起来。)

(二)探究新知

1.定义。

学生说出旋转过程以引出中心对称的定义:

(如果把一个图形绕着某一个点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心。)

教师演示强调“180°”和“重合”。

(设计意图:本身对称中心就需要学生建立一定的立体感,所以教师需要进行旋转展示来帮助同学们建立空间想象能力。)

2.性质。

连接旋转前后的一组对应点,你发现了什么?再选其他对应点试一试。

教师演示引导学生归纳出成中心对称的性质:

(成中心对称的两个图形中,对应点所连线段经过对称中心,并且被对称中心平分。)

3.作图。

教师在黑板上画出△ABC,选择一点O为对称中心,要求学生画出与△ABC关于点O对称的△A′B′C′。

学生画后反馈。

4.中心对称图形。

教师将一张A4纸绕中心旋转180°,让学生说说现象,引出中心对称图形:

(把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。)

5.中心对称与中心对称图形的区别与联系。

同学们,这节课出现了“中心对称”与“中心对称图形”两个概念,那它们有什么区别与联系呢?请同学们思考、交流后回答。

(区别:中心对称指两个全等图形的相互位置关系,中心对称图形指一个图形本身成中心对称.

联系:如果将中心对称图形的两个图形看成一个整体,则它们是中心对称图形.如果将中心对称图形对称的部分看成两个图形,则它们成中心对称.)

(设计意图:中心对称和中心对称图形学生们很容易弄混淆,也是本节课的难点内容,所以教师需要带着同学们去区分,这样有助于同学们突破难点。)

(四)巩固提高

1.在你所学的平面图形中,哪些图形是中心对称图形?

2.完成课本83页的“随堂练习”。

(设计意图:口头描述的题目的设计,是为了让学生能够利用所学知识进行解决实际问题。)

(五)小结作业

在小结环节,我会让学生回答以下三个问题:(1)什么叫做中心对称?(2)你能不能画出一个图形的中心对称图形呢?

(设计意图:通过小结,引导学生从知识内容和学习过程两个方面总结自己的收获,通过建立知识之间的联系,再一次回忆本节课的重难点内容。)

作业:完成本节课练习题并且有能力的同学预习下一节课的内容。

(设计意图:照顾了学生的个体差异性。)


七、板书设计

为了体现教材中的知识点,以便于学生能够理解掌握,我采用图表式的板书,这就是我的板书设计。


中心对称

1.定义。

2.性质。

3.作图。

4.中心对称图形。

5.中心对称与中心对称图形的区别与联系。


初中数学《二元一次方程组》说课稿


尊敬的各位考官大家好,我是今天的X号考生,今天我说课的题目是《二元一次方程组》。

新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。


一、说教材

首先谈谈我对教材的理解,《二元一次方程组》是人教版初中数学七年级下册第八章第一节的内容,本节课的内容是二元一次方程组的概念以及二元一次方程组的解。在此之前学习了一元一次方程和解方程的步骤,为本节课打下了良好的基础。学了本节课为后面的解二元一次方程的方法做下铺垫。因此本节课有着承上启下的作用。


二、说学情

接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,与类比学习能力。而且在生活中也为本节课积累了很多经验。所以,学生对于二元一次方程组概念理解较为容易,找出方程组的解,相对来说有难度,需要教师多引导。


三、说教学目标

根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

(一)知识与技能

掌握二元一次方程与二元一次方程组的概念,并了解它们的解,能正确地找出二元一次方程组的解。

(二)过程与方法

通过类比学习、自主探究、合作交流的过程,提升类比学习的能力、培养探究的意识。

(三)情感态度价值观

感受数学与生活的密切联系,培养学习数学的兴趣。


四、说教学重难点

我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:二元一次方程与二元一次方程组的概念以及方程与方程组的解。教学难点是:二元一次方程组解的探究。


五、说教法和学法

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。


六、说教学过程

下面我将重点谈谈我对教学过程的设计。

(一)新课导入

首先是导入环节,我采用情境导入:展示篮球联赛图片,给出评分标准。并提出问题:这个队伍胜负场数分别是多少?

根据学生回答追问:用列方程解决问题,题中有几个未知数呢?从而引出本节课的课题《二元一次方程组》

这样设计的好处是:利用篮球联赛的图片导入,并讲清楚评分规则,不仅可以吸引学生探索的兴趣,还可以培养学生的数学应用意识。


(二)新知探索

接下来是教学中最重要的新知探索环节,主要通过三个活动展开学习。

活动一:学生尝试列方程解决问题,看看在列方程过程中遇到了什么困难?同桌之间互相交流。

学生分析题意,发现有未知数,可以使用列方程的方法解决问题。当让学生自己动手练习时,他们会发现,胜负的场数都是未知的。

此时教师可以引导学生发现和思考:要求的是两个未知数,能不能根据题意直接设两个未知数,使列方程变得容易呢?学生在这样的提示下会有一定的想法,但对于列出二元一次方程组来说还是比较困难的。

教师板书表格示意图,引导学生通过题意,发现题干中包含的必须同时满足的条件,得到两组关系式并设出未知数完成表格。

活动二:学生观察两个方程特点,与一元一次方程有什么不同?并试着下定义。

在这里学生通过类比学习,能够归纳出二元一次方程的概念:每个方程都含有两个未知数,并且含有未知数的项的次数都是1。了解了二元一次方程后,对于二元一次方程组的概念就可以很好的展开了,对于本题列了两个二元一次方程解决问题,像这样的方程组叫做二元一次方程组。

师生共同总结出二元一次方程与二元一次方程组的定义。

列出了二元一次方程组,要解决篮球联赛的问题,就要求出方程组的解,接下来进行第三个活动。

活动三:完成表格,以二元一次方程组中的一个方程为例。小组合作,找出几组整数解,并观察哪一组解也符合另一个方程。

在这里解二元一次方程组,可以先将问题简单化,先研究一个方程的解,找到几组解后,再看哪一组解也符合第二个方程。也就是两个方程的公共解。教师给出表格,小组在进行合作时,教师应引导学生思考结合题意,两个未知数应取正整数。填完表格后,师生共同总结出二元一次方程解的定义。

教师继续追问,哪一组的值也满足第二个方程。师生共同总结出什么叫做二元一次方程组的解。

得到方程组的解,回归情景得出实际问题的答案。

设计意图:通过三个活动展开本节课,不仅符合新课改的理念:学生是学习的主体,教师是教学活动中的组织者、引导者、合作者,还能通过小组活动、类比学习等活动丰富课堂。


(三)课堂练习

接下来是巩固提高环节。

练习:对下面的问题,列出二元一次方程组,并根据问题的实际意义,找出问题的解。

加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件。现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一、第二道工序所完成的件数相等?

设计这道题可以让学生感受数学与生活的密切联系,学以致用。教师可以及时掌握学生本节课的学习情况,给予补充纠正。


(四)小结作业

在课程的最后我会提问:今天有什么收获?

引导学生回顾:二元一次方程组的定义与二元一次方程组的解。

本节课的课后作业我设计为:

思考除了用列表找二元一次方程组的解,还有什么方法能找出解,能不能将它变成我们熟悉的一元一次方程求解。

设计意图:本节课学生通过列表观察得到了方程组的解,作业设计为让学生思考解二元一次方程组的方法,并提示能不能把它变成熟悉的一元一次方程求解,为下节课的学习做下铺垫。


七、说板书设计

我的板书设计遵循简洁明了突出重点部分,以下是我的板书设计:



初中数学《勾股定理的逆定理》说课稿


各位考官,大家好,我是X号考生,今天我说课的内容是《勾股定理的逆定理》。根据新课程标准,我将以教什么,怎么教,为什么这么教为思路开展我的说课,首先,我先来说说我对教材的理解。

教材分析是上好一堂课的前提条件,在上好一堂课之前,我首先谈一谈对教材的理解。


一、说教材

“勾股定理的逆定理”一节?是在上节“勾股定理”之后继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化。勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。


二、说学情

中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。学生此前学习了三角形有关的知识,掌握了直角三角形的性质和勾股定理,学生在此基础上学习勾股定理的逆定理可以加深理解。


三、说教学目标

根据数学课标的要求和教材的具体内容结合学生实际我确定了如下教学目标。

【知识与技能】

理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。利用勾股定理的逆定理判定一个三角形是不是直角三角形。

【过程与方法】

通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。

【情感态度与价值观】?

通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。


四、说教学重难点

重点:勾股定理逆定理的应用;

难点:探究勾股定理逆定理的证明过程。


五、说教学方法

科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。基于此,我准备采用的教法是讲练结合法,小组讨论法。


六、说教学过程

(一)导入新课

在导入新课环节,我会采用温故知新的导入方法,先让学生回顾勾股定理有关知识,并引入本节课的课题——勾股定理逆定理。

【设计意图】通过复习回顾能很好地将新旧知识联系起来,使学生形成对知识的系统的认识。并且由旧知开始,能很好地帮助学生克服畏难情绪。

(二)探究新知

一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题去提示本节课的探究宗旨,演示古代埃及人把一根长绳打上等距离的13个结,然后便得到一个直角三角形这是为什么?这个问题一出现,马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视激发了学生的兴趣,因而全身心地投入到学习中来创造了我要学的气氛,同时也说明了几何知识来源于实践不失时机地让学生感到数学就在身边。

因为几何来源于现实生活,对初二学生来说选择适当的时机让他们从个体实践经验中开始学习可以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手折纸在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。

这样设计是因为勾股定理逆定理的证明方法是学生第一次见,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手裁出了一个两直角边与所折三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。

接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等顺利作出了辅助直角三角形,整个证明过程自然无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程。这样学生不是被动接受勾股定理的逆定理?因而使学生感到自然、亲切。学生的学习兴趣和学习积极性有所提高,使学生确实在学习过程中享受到自我创造的快乐。

在同学们完成证明之后,可让他们对照课本把证明过程严格的阅读一遍充分发挥教科书的作用养成学生看书的习惯这也是在培养学生的自学能力。

(三)巩固提高

本着由浅入深的原则安排了三个题目。演示第一题比较简单(判断下列三条线段组成的三角形是不是直角三角形,比如15、8、17;13、14、15等等)让学生口答让所有的学生都能完成。

第二题则进了一层用字母代替了数字,绕了一个弯,既可以检查本课知识又可以提高灵活运用以往知识的能力。

思维提高了课堂教学的效果和利用率。在变式训练中我还采用讲、说、练结合的方法,教师通过观察、提问、巡视、谈话等活动、及时了解学生的学习过程,随时反馈调节教法同时注意加强有针对性的个别指导把发展学生的思维和随时把握学生的学习效果结合起来。

(四)小结作业

在小结环节,我会随机询问学生勾股定理的逆定理是什么?如果判断一个三角形是不是直角三角形,以及勾股定理的逆定理的应用需要注意点什么等问题,先让学生归纳本节知识和技能,然后教师作必要的补充,尤其是注意总结思想方法培养能力方面比如辅助线的添法。

设计意图:这样设计可以帮助学生以反思的形式回忆本节课所学的知识,加深对知识的印象,有利于学生良好的数学学习习惯的养成。

由于学生的思维素质存在一定的差异,教学要贯彻“因材施教”的原则,为此我安排了两组作业。第一组是基础题,我会用ppt出示关于勾股定理的逆定理的计算题目,这样有利于学生学习习惯的培养,以及提高他们学好数学的信心。第二组是开放性题目,让学生课后思考总结一下判定一个三角形是直角三角形的方法。


七、说板书设计

下面我说一说我的板书设计。以清晰明了的形式将本堂课的重点内容展示出来,让学生能够清晰的看到本堂课学到的知识点。


相关文章